เรื่อง ยีนและโครโมโซม สามารถแยกได้

 ยีนและโครโมโซม สามารถแยกได้

1. การถ่ายทอดยีนและโครโมโซม

ในการถ่ายทอดลักษณะทางพันธุกรรมจะมีหน่วยควบคุมลักษณะ ( genetic unit) ควบคุม สิ่งมีชีวิต ให้มีรูปร่าง และลักษณะเป็นไปตามเผ่าพันธุ์ของพ่อแม่ เรียกว่า ยีน ดังนั้นยีนจึงทำหน้าที่ ควบคุมการถ่ายทอดลักษณะต่างๆ จากบรรพบุรุษไปสู่รุ่นหลาน ลักษณะต่างๆ ที่ถ่ายทอดไปนั้นพบว่าบางลักษณะไม่ปรากฎในรุ่นลูกแต่อาจจะปรากฎใน รุ่นหลานหรือเหลนก็ได้จึงมีผลทำให้เกิดความแตกต่างกันของลักษณะทางพันธุกรรม จนมีผลทำให้สิ่งมีชีวิตเกิดความ หลากหลาย แต่การสะสมลักษณะทางพันธุกรรมจำนวนมากทำให้เกิดสปีชีส์ต่างๆ และสามารถดำรงเผ่าพันธุ์ไว้ได้จนถึงปัจจุบัน  สิ่งมีชีวิตส่วนใหญ่แต่ละชนิดประกอบขึ้นด้วยเพศที่แตกต่างกัน คือ เพศผู้และเพศเมีย ลูกที่เกิดขึ้น จะพัฒนามาจากเซลล์เพศผู้ คือ สเปิร์ม(Sperm) และเซลล์เพศเมีย คือ เซลล์ไข่ (Egg) มารวมตัวกัน เป็นไซโกต Zygote โดยกระบวนการสืบพันธุ์ ดังนั้น ยีนจากพ่อและแม่น่าจะมี การถ่ายสู่ลูกด้วยกระบวนการดังกล่าว ต่อมาเมื่อมีการค้นพบสีย้อมนิวเคลียส ในปี พ.ศ. 2423 จึงพบว่าในนิวเคลียสมีโครงสร้างที่มีลักษณะเป็นเส้น เรียกว่า โครโมโซม สีย้อมดังกล่าวทำให้นักวิทยาศาสตร์สามารถติดตาม การเปลี่ยนแปลงของโครโมโซมขณะที่มีการแบ่งเซลล์ และทำให้รู้จัก การแบ่งเซลล์ใน 2 ลักษณะ คือ
การแบ่งเซลล์แบบ ไมโทซิส (Mitosis) ซึ่งพบว่ากระบวนการนี้เซลล์ลูกที่เกิดขึ้นจะมีโครโมโซมเหมือนกันทั้งหมด
การแบ่งเซลล์แบบไมโอซิส (Meiosis) ที่มีผลทำให้เซลล์ลูกที่เกิดขึ้นจะมีจำนวนโครโมโซมเป็นครึ่งหนึ่งของเซลล์ เริ่มต้น (haploid cell)
ความแตกต่างระหว่างการแบ่งเซลล์แบบ Mitosis และ Miosis

สมมติฐานของวอลเตอร์ เอส ซัตตัน (Walter S. Sutton )

ใน ระหว่างปี ค.ศ. 1902-1903 หลังจากที่ผลงานของเมนเดล ได้รับความสนใจจากนักชีววิทยาไม่มากนัก วอลเตอร์ เอส ซัตตัน (Walter S. Sutton ) นักชีววิทยาชาวอเมริกันทำการศึกษาค้นคว้าเกี่ยวกับพฤติกรรมของโครโมโซม วอลเตอร์ ซัตตัน(Walter Sutton) เสนอ ทฤษฎีโครโมโซม ในการถ่ายทอดลักษณะทางพันธุกรรม (chromosome theory of inheritance) โดยเสนอว่า สิ่งที่เรียกว่าแฟกเตอร์จากข้อเสนอของเมนเดลซึ่งต่อมาเรียกว่า ยีน นั้นน่าจะอยู่บนโครโมโซม เพราะมีเหตุการณ์หลายอย่างที่ยีนและโครโซม มีความสอดคล้องกันกัน ดังนี้
  1. ยีนมี 2 ชุด และโครโมโซมก็มี 2 ชุด
  2. ยีนและโครโมโซมสามารถถ่ายทอดไปสู่รุ่นลูกหลาน
  3. ขณะที่มีการแบ่งเซลล์แบบไมโอซิส โครโมโซมมีการเข้าคู่กัน และต่างแยกจากกันไปยังเซลล์ลูกทีเกิดขึ้นคนละเซลล์ ซึ่งลักษณะเดียวกันนี้ก็เกิดขึ้นได้กับยีนโดยมีการแยกตัวของแอลลีลทั้งสองไปยังเซลล์สืบพันธุ์
  4. การแยกตัวของโครโมโซมที่เป็นคู่กันไปยังขั้วเซลล์ ขณะที่มีการแบ่งเซลล์ แต่ละคู่นั้นดำเนินไปอย่างอิสระเช่นเดียวกันกับการแยกตัวของแอลลี ลไปยังเซลล์สืบพันธุ์
  5. ขณะเกิดการสืบพันธุ์ การรวมตัวกันของเซลล์ไข่และสเปิร์มเกิดเป็นไซโกตเป็นไปอย่างสุ่ม ทำให้การรวมตัวกันระหว่างชุดโครโมโซมจากเซลล์ไข่และสเปิร์มเป็นไปอย่าง สุ่มด้วย ซึ่งเหมือนกับการที่ชุดของแอลลีลในเซลล์สืบพันธุ์ของแม่เมื่อมการสืบพันธุ์ ก็เป็นไป อย่างสุ่มเช่นกัน
  6. ทุกเซลล์ที่พัฒนามาจากไซโกตจะมีโครโมโซมครึ่งหนึ่ง จากแม่และอีกครึ่งหนึ่งจากพ่อ ส่วนยีนครึ่งหนึ่ง ก็มาจากแม่และอีกครึ่งหนึ่งก็มาจากพ่อเช่นกันทำให้ลูกที่เกิดมาจึงมีลักษณะ แปรผันไปจากพ่อและแม่

3. โครโมโซม

หน่วยพันธุกรรม (Gene)
หน่วยพันธุกรรม หรือ ยีน คือ ส่วนหนึ่งของโครโมโซม (Chromosome segment) ที่ถอดรหัส (encode) ได้เป็นสายโพลีเปปไตด์หนึ่ง สายที่ทำงานได้ (single functional polypeptide) หรือได้เป็นอาร์เอ็นเอ ยีน ประกอบด้วย ส่วนที่สามารถถอดรหัสเป็นอาร์เอ็นเอได้ เรียกว่า exon และ บริเวณที่ไม่สามารถถอดรหัสได้ เรียกว่า intron

ภาพจาก upload.wikimedia.org/wikipedia/commons/0/07/Gene.pngยีนสามารถเป็นได้ทั้ง ดีเอ็นเอ หรือว่า อาร์เอ็นเอ ก็ได้ แต่ในสิ่งมีชีวิตชั้นสูงนั้นจะเป็นดีเอ็นเอหมดเพราะเสถียรมากเหมาะแก่การ เก็บข้อมูล ขณะที่อาร์เอ็นเอ จะพบในพวกไวรัส ยีนทั้งหมดของสิ่งมีชีวิตหรือเซลล์จะรวมเรียกว่า จีโนม และโครงสร้างของจีโนมในพวกโพรคารีโอตและยูคารีโอตจะแตกต่างกัน ถ้ายีนเกิดผิดไปจากปกติเรียกว่า การกลายพันธุ์ ซึ่งเกิดเองตามธรรมชาติหรือถูกกระตุ้นให้เกิดก็ได้ โดยส่วนมากแล้วเมื่อยีนเกิดผิดปกติไปจะส่งผลเสียต่อสิ่งมีชิวิตนั้นมากกว่า ผลดี เช่น ในคน สามารถทำให้ป่วย เจ็บไข้ หรือถึงแก่ชีวิตได้ โรคที่เกิดจากสาเหตุนี้เรียกว่า โรคทางพันธุกรรม ซึ่งจะถ่ายทอดไปยังรุ่นต่อไปหรือไม่ก็ได้การค้นหาหน้าที่ของยีนและกลไกการทำงานของยีน สามารถตรวจสอบได้จากผลิตผลหรือลักษณะต่างๆ ที่เป็นการแสดงออกของยีนนั้นในสิ่งมีชีวิตที่ทำการศึกษา โดยเปรียบเทียบระหว่างยีนปกติกับยีนที่ทำงานผิดไปจากเดิม หรือยีนกลาย (mutated gene) จากการสกัดแยกยีนที่สนใจออกมาจากสิ่งมีชีวิต ทำการชักนำให้เกิดการกลายพันธุ์ และนำมาส่งถ่ายกลับเข้าไปในเซลล์ปกติ แล้วตรวจดูผลที่เกิดขึ้น ทำให้ทราบว่ายีนนั้นทำงานหรือควบคุมการแสดงออกของลักษณะทางพันธุกรรมอะไร นอกจากนี้ ยังสามารถทำการดัดแปลงยีนให้สร้างผลิตผล ตามต้องการได้โดยอาศัยเทคโนโลยีการตัดต่อยีน ด้วยวิธีการดัดแปลงหรือปรับปรุงชิ้นส่วนดีเอ็นเอ หรือยีนให้เป็นไปตามที่ต้องการ แล้วทำการส่งถ่ายยีนเข้าสู่สิ่งมีชีวิต
เป้าหมายเพื่อสร้างสิ่งมีชีวิตดัดแปลงพันธุกรรม หรือ GMOs (Genetically Modified Organisms) ต่อไปการนำวิธีการด้านเทคโนโลยีชีวภาพต่างๆ มาใช้ เพื่อศึกษาทางด้านยีนและด้านพันธุกรรม ได้แก่
  1. การสกัดแยกดีเอ็นเอออกจากเซลล์
  2. การตัด ต่อ รวมทั้งการดัดแปลง ชิ้นส่วนดีเอ็นเอ
  3. การเพิ่มปริมาณยีนหรือการโคลน ยีน (gene cloning)
  4. การเพิ่มชิ้นส่วนดีเอ็นเอที่มีความ จำเพาะจากการทำปฏิกิริยาภายในหลอดทดลอง ในเครื่องควบคุมอุณหภูมิ
  5. การศึกษาชิ้นส่วนดีเอ็นเอด้วยวิธีแยกขนาดและปริมาณ ผ่านตัวกลางที่เป็นแผ่นวุ้นโดยใช้กระแสไฟฟ้า
  6. การตรวจและพิสูจน์ดีเอ็นเอที่มีการเรียงลำดับเบสที่จำเพาะบนแผ่นเม็มเบรน (เยื่อ) พิเศษ (southern bloting)
  7. การหาลำดับเบสบนสายดีเอ็นเอ (DNA sequencing)
  8. การศึกษาความแตกต่างระดับยีน โดยการใช้เครื่องหมายดีเอ็นเอ
  9. การเพาะเลี้ยงเซลล์และการเพาะ-เลี้ยงเนื้อเยื่อ
  10. การส่งถ่ายยีนเพื่อการเปลี่ยนแปลง ลักษณะทางพันธุกรรมของสิ่งมีชีวิตที่ต้องการ
อ้างอิง

โครโมโซม (Chromosome)

สิ่งมีชีวิตประกอบด้วยหน่วยพื้นฐานที่สำคัญ ก็คือ เซลล์ เซลล์มีส่วนประกอบที่สำคัญได้แก่

  1. เยื่อหุ้มเซลล์
  2. ไซโตพลาสซึม
  3. นิวเคลียส

ภายในนิวเคลียสจะมีองค์ประกอบที่สำคัญชนิดหนึ่งที่ทำหน้าที่ควบคุมลักษณะของ สิ่งมีชีวิต เรียกว่า โครโมโซม โครโมโซมมีองคประกอบเป็นสารเคมีประเภทโปรตีน และกรดนิวคลีอิก ขณะแบ่งเซลล์โครโมโซมจะมีรูปร่างเปลี่ยนแปลงไป มีชื่อเรียกตามรูปร่างลักษณะที่เปลี่ยนลักษณะของโครโมโซม

ในภาวะปกติเมื่อมองผ่านกล้องจุลทรรศน์จะเห็นโครโมโซมมีลักษคล้ายเส้นด้ายบางๆ เรียกว่า “โครมาติน (chromatin)” ขดตัวอยู่ในนิวเคลียส เมื่อเซลล์เริ่มแบ่งตัว เส้นโครมาตินจะหดตัวสั้นเข้ามีลักษณะเป็นแท่ง จึงเรียกว่า “โครโมโซม” แต่ละโครโมโซมประกอบด้วยแขนสองข้างที่เรียกว่า “โครมาทิด (chomatid)” ซึ่งแขนทั้งสองข้างจะมีจุดเชื่อมกัน เรียกว่า เซนโทรเมียร์( centromere)
โครโมโซมเป็นโครงสร้างที่อยู่ในนิวเคลียสของเซลล์ ในขณะที่เซลล์ไม่แบ่งตัว โครโมโซมจะยืดยาวออกคล้ายๆ เส้นใยเล็กๆ สานกันอยู่ในนิวเคลียส เมื่อมีการแบ่งเซลล์จะมีการแบ่งโครโมโซม โดยโครโมโซมจะจำลองตัวเองขึ้นมา เป็นเส้นคู่ที่เหมือนกันทุกประการ แล้วค่อยๆ ขดตัวสั้นเข้า โครโมโซมก็จะโตมาก การศึกษาโครโมโซมจึงต้องศึกษา ในระยะแบ่งเซลล์ ถ้ามีเทคนิคในการเตรียมที่ดี ก็จะสามารถมองเห็นรูปร่างลักษณะของโครโมโซมจาก กล้องจุลทรรศน์ และอาจนับจำนวนโครโมโซมได้ โครโมโซม เป็นโครงสร้างที่อยู่ในนิวเคลียสของเซลล์ ในขณะที่เซลล์ไม่แบ่งตัวหรืออยู่ในระยะอินเตอร์เฟต (interphase)เราจะไม่เห็นโครโมโซมเนื่องจากโครโมโซม อยู่ในลักษณะเป็นเส้นใยเล็กๆสานกันอยู่ในนิวเคลียสเส้นใยนี้เรียกว่า โครมาทิน (Chromatin) แต่เมื่อเซลล์จะแบ่งตัวโครมาตินแต่ละเส้นจะแบ่งจาก1 เป็น 2 เส้น แล้วขดตัวสั้นเข้าและหนาขึ้นจนมองเห็น เป็นแท่งในระยะโพรเฟส และ เมทาเฟต และเรียกชื่อใหม่ว่า โครโมโซมทำให้เรามองเห็นรูปร่างลักษณะ และจำนวนโครโมโซมได้โครโมโซมที่เห็นได้ชัดในระยะเมทาเฟต ประกอบด้วย โครมาทิน 2 อัน ยึดติดกันตรงเซนโทรเมียร์ ส่วนของโครโมโซมที่ยื่นออกไปจากเซนโทรเมียร์ เรียกว่า แขน อันสั้นเรียกว่า แขนสั้น อันยาวเรียกว่าแขนยาว ในโครโมโซมบางอัน มีเนื้อโครโมโซมเล็กๆ ยึดติดกับส่วนใหญ่โดยเส้นเล็กๆ เรียกว่า เนื้อโครโมโซมเล็กๆ นั้นว่า stellite และเส้นโครโมโซมเล็กๆ นั้น เรียกว่า secondary constriction โครมาทิน เป็นสารนิวคลีโอโปรตีน ซึ่งก็คือ DNA สายยาวสายเดียวที่พันรอบโปรตีนที่ชื่อ ฮีสโทน (histone) เอาไว้ ทำให้รูปร่างโครมาทินคล้ายลูกปัดที่เรียงต่อๆ กัน แล้วมี DNA พันรอบลูกปัดนั้น ในเซลล์ทั่วๆ ไป เมื่อย้อมสีเซลล์ ส่วนของโครมาทินจะติดสีได้ดีและมองดูคล้ายตาข่างละเอียดๆ จึงเห็นนิวเคลียสชัดเจน

ที่มา www.il.mahidol.ac.th/course/dna/chapter/chapt

สิ่งมีชีวิตชนิดหนึ่งอาจมีโครโมโซมที่มีรูปร่างแบบเดียวหรือหลายแบบก็ได้ สามารถศึกษาโครโมโซมแบบต่างๆ ได้ดังภาพ

ที่มา http://www.thaigoodview.com/library/contest2551/science03/53/2/heredity/topic02_00_00.html

โครโมโซมแบ่งเป็นแบบต่างๆ ได้ดังนี้

  1. Metacentric เมตาเซนตริก เป็นโครโมโซมที่มีแขนยื่น 2 ข้างออกจากเซนโทรเมียร์เท่ากันหรือเกือบเท่ากัน
  2. Submetacentric ซับเมตาเซนตริก เป็นโครโมโซมที่มีแขนยื่นออกมา 2 ข้างจากเซนโทรเมียร์ไม่เท่ากัน
  3. Acrocentric อะโครเซนตริก เป็นโครโมโซมที่มีลักษณะเป็นแท่งโดยมีเซนโทรเมียร์อยู่ใกล้กับปลายข้างใด ข้างหนึ่ง จึงเห็นส่วนเล็กๆ ยื่นออกจากเซนโทรเมียร์
  4. Telocentric เทโลเซนตริก เป็นโครโมโซมที่มีลักษณะเป็นแท่งโดยมีเซนโทรเมียร์อยู่ตอนปลายสุดของโครโมโซม

ส่วนประกอบของโครโมโซม 

ถ้าหากจะประมาณสัดส่วนระหว่าง DNA และโปรตีนที่เป็นองค์ประกอบของโครโมโซมของยูคาริโอต จะพบว่าประกอบด้วย DNA 1 ใน 3 และอีก 2 ใน 3 เป็นโปรตีน โดยส่วนที่เป็นโปรตีนจะเป็น ฮิสโตน(histone) และนอนฮิสโตน(non-histone) อย่างละประมาณเท่าๆกันในปี พ.ศ. 2427 นักวิทยาศาสตร์พบว่าฮิสโตนเป็นโปรตีนที่มีองค์ประกอบ ส่วนใหญ่เป็นกรดอะมิโนที่มีประจุบวก(basic amino acid) เช่น ไลซีน และอาร์จินีนทำให้มีสมบัติในการเกาะจับกับสาย DNA ซึ่งมีประจุลบได้เป็นอย่างดี และทำให้เกิดการสร้าง สมดุลของประจุ(neutralize)ของโครมาทินด้วยสาย DNA พันรอบกลุ่มโปรตีนฮิสโตนคล้ายเม็ดลูกปัด เรียกโครงสร้างนี้ว่า นิวคลีโอโซม (nucleosome) โดยจะมีฮิสโตนบางชนิดเชื่อมต่อระหว่างเม็ดลูกปัดแต่ละเม็ด ดังภาพ
ส่วนประกอบของโครโมโซม

ที่มา  สถาบันส่งเสริมการสอนวิทยาศาสตร์,  2544,หน้า48

ส่วนของโปรตีนนอนฮิสโตนนั้นมีมากมายหลายชนิด อาจเป็นร้อยหรือพันชนิด ขึ้นอยู่กับชนิดของสิ่งมีชีวิตโดยโปรตีนเหล่านี้จะมีหน้าที่แตกต่างกันไป บางชนิดมีหน้าที่ช่วยในการขดตัวของ DNA หรือบางชนิดก็เกี่ยวข้องกับกระบวนการจำลองตัวเองของDNA (DNA replication) หรือการแสดงออกของจีนเป็นต้นสำหรับในโพรคาริโอต เช่น แบคทีเรีย E. coli มีจำนวนโครโมโซมชุดเดียวเป็นรูปวงแหวนอยู่ในไซโตพลาสซึม ประกอบด้วย DNA 1 โมเลกุล และไม่มีฮิสโตนเป็นองค์ประกอบโครโมโซมของสิ่งมีชีวิตแต่ละชนิดที่ปกติจะมีจำนวนคงที่เสมอ   และจะมีจำนวนเป็นเลขคู่   เช่น  โครโมโซมของคนมี  46    แท่ง หรือ  23  คู่  โครโมโซมเพศหญิง    จะมีลักษณะและขนาดเหมือนกันทั้งคู่    ใช้สัญลักษณ์  xx   ส่วน โครโมโซมเพศชายจะมี   รูปร่างลักษณะ  และขนาดต่างกัน ใช้สัญลักษณ์ xy

โครโมโซม

ที่มา http://www.sarinp.com/unit3/chromosome1.htm

สารพันธุกรรมทั้งหมดของสิ่งมีชีวิตชนิดหนึ่งๆ เรียกว่า จีโนม(genome) จากการศึกษาพบว่าสิ่งมีชีวิตแต่ละชนิดมีขนาดของจีโนมและจำนวนจีนแตกต่างกัน ดังตารางข้างล่างนี้

ขนาดของจีโนมและจำนวนจีโนมของสิ่งมีชีวิตชนิดต่างๆ

ที่มา  http://www.thaigoodview.com/library/contest2552/type2/science04/27/images/c5.jpg

จีโนม คือ มวลสารพันธุกรรมทั้งหมดที่จำเป็นต่อการดำรงชีวิตอย่างปกติของสิ่งมี ชีวิต ซึ่งในกรณีของสิ่งมีชีวิตชั้นสูง จีโนมก็คือ ชุดของ DNA ทั้งหมดที่บรรจุอยู่ในนิวเคลียสของทุก ๆ เซลล์นั่นเอง จึงมีคำกล่าวว่า จีโนมคือ “แบบพิมพ์เขียว” ของสิ่งมีชีวิต ในจีโนมของพืชและสัตว์นั้น นอกจาก DNA ส่วนที่เก็บรหัสสำหรับสร้างโปรตีนที่จำเป็นต่อการดำรงชีวิตของเซลล์ซึ่ง เรียกกันว่า ยีน (gene) แล้ว ยังมีส่วนของ DNA ที่ไม่ใช่ยีน

อ้างอิง

4. องค์ประกอบทางเคมีของ DNA

กรดนิวคลีอิก ( nucleic acid ) เป็นสารชีวโมเลกุลที่มีขนาดใหญ่ทำหน้าที่เก็บและถ่ายทอดข้อมูลทางพันธุ์กรรมของสิ่งมีชีวิต จากรุ่นหนึ่งไปยังรุ่นต่อไปให้แสดงลักษณะต่าง ๆ ของสิ่งมีชีวิต นอกจากนี้ ยังทำหน้าที่ควบคุมการเจริญเติบโตและกระบวนการต่าง ๆ ของสิ่งมีชีวิต กรดนิวคลีอิกมี 2 ชนิด คือ DNA ( deoxyribonucleic acid ) และRNA ( ribonucleic acid )  โมเลกุลของกรดนิวคลีอิก ประกอบด้วยหน่วยย่อยที่เรียกว่านิวคลีโอไทด์( nucleotide )  นอกจากนี้ นิวคลีโอไทด์ยังเป็นสารให้พลังงาน เช่น ATP ( acenosine triphosphate )  นิวคลีโอไทด์จะเรียงตัวต่อกันเป็นสายยาว เรียกว่า พอลินิวคลีโอไทด์ ( polynucleotide )  โมเลกุล DNA ประกอบด้วยพอลินิวคลีโอไทด์ 2 สายเรียงตัวสลับทิศทางกันและมีส่วนของ เบสเชื่อมต่อกันด้วยพันธะไฮโดรเจน โมเลกุลบิดเป็นเกลียวคล้ายบันไดเวียน ส่วนRNA เป็นพอลินิวคลีอิกเพียงสายเดียวDNA ประกอบด้วย หน่วยย่อยของนิวคลีโอไทด์   Nucleotides Nucleotides นี้ประกอบด้วย

               1. น้ำตาลดีออกซีไรโบส ( Deoxyribose Sugar) มีสูตรโมเลกุล C5H10O4

โครงสร้างของน้ำตาลดีออกซีไรโบส

ที่มา www.blc.arizona.edu/Molecular_Graphics/DNA_Structure/DNA_Tutorial.HTML         

2. ไนโตรจีนัสเบส (Nitrogenous Base) แบ่งเป็น 2 กลุ่ม คือ  
ก. เบสพิวรีน  มีวงแหวน 2 วง แบ่งเป็น 2 ชนิดได้แก่   Guanine (G) , Adenine (A)
ข. เบสไพริมีดีน ( Pyrimidine base) มีวงแหวน 1 วง มี 2 ชนิดได้แก่ Cytosin (C) , Thymine (T)

3. หมู่ฟอสเฟต (phophate group )
โครงสร้างของนิวคลีโอไทด์การประกอบขึ้นเป็นนิวคลีโอไทด์นั้น ทั้งสามส่วนจะประกอบกันโดยมีน้ำตาลเป็นแกนหลัก มีไนโตรจีนัสเบส อยู่ที่คาร์บอนตำแหน่งที่ 1 และหมู่ฟอสเฟตอยู่ที่คาร์บอนตำแหน่งที่ 5 ดังนั้นจึงสามารถจำแนกนิวคลีโอไทด์ใน DNA  ได้ 4 ชนิด ซึ่งจะแตกต่างกันตามองค์ประกอบที่เป็นเบส ได้แก่ เบส A   เบส T    เบส C และ  เบส
โครงสร้างของ ดี เอน เอ
การศึกษาโครงสร้างของ ดี เอน เอ มีรากฐานมาจากการศึกษาของนักวิทยาศาสตร์หลายกลุ่ม เริ่มตั้งแต่งานของ Chargaff แห่งมหาวิทยาลัยโคลัมเบีย ซึ่งได้ศึกษาองค์ประกอบเบสของ ดี เอน เอ จากแหล่งต่างๆ แล้วสรุปเป็นกฎของ Chargaff ดังนี้
  1. องค์ประกอบเบสของ DNA จากสิ่งมีชีวิตต่างชนิดจะแตกต่างกัน
  2. องค์ประกอบเบสของ DNA จากสิ่งมีชีวิตชนิดเดียวกันจะเหมือนกัน แม้ว่าจะนำมาจากเนื้อเยื่อต่างกันก็ตาม
  3. องค์ประกอบเบสของ DNA ในสิ่งมีชีวิตชนิดหนึ่งมีความคงที่ ไม่แปรผันตามอายุ อาหาร หรือสิ่งแวดล้อม
  4. ใน DNA ไม่ว่าจะนำมาจากแหล่งใดก็ตาม จะพบ A=T , C=G หรือ purine = pyrimidine เสมอ
อ้างอิง
5. การค้นพบโครงสร้างของ DNA
ปี พ.ศ. 2412 นายแพทย์ชาวสวิส ชื่อ ฟรีคริช มีเซอร์ (Friendrech Mieseher) ได้ค้นพบในนิวเคลียสซึ่งไม่ใช่โปรตีน ไขมัน หรือคาร์โบไฮเดรต เขาตั้งชื่อสารนี้ว่ากรดนิวคลีอิก ซึ่งหมายถึงสารอินทรีย์พวกหนึ่งที่มีฤทธิ์เป็นกรดอยู่ในนิวเคลียส
ปี พ.ศ. 2453 Albrecht Rossel นักเคมีชาวเยอรมันได้รับรางวัลโนเบล สาขาวิทยาศาสตร์การแพทย์ และสารวิทยา เนื่องจากเขาได้วิเคราะห์กรดนิวคลีอิก และพบว่าประกอบด้วย ไนโตรจีนัสเบส 2 ประการ คือ
  1. ไพริมิดีน (pyrimidine) มีวงของคาร์บอนและไนโตรเจน 1 วง คือ ไทมีน (thymine) ไซโทซีน (cytosine) ยูราซิล (uracil)
  2. พิวรีน (purine) มีวงของคาร์บอนและไนโตรเจน 1 วง มีขนาดโมเลกุลใหญ่กว่า คือ อะดีนีน (adenine) กวานีน (guanine)
เลวีนเสนอว่านิวคลีโอไทด์จะมีการเชื่อมต่อกันโดย สร้างพันธะระหว่างหมู่ ฟอสเฟตของนิวคลีโอไทด์หนึ่งกับน้ำตาลอีกนิวคลีโอไทด์หนึ่ง ที่มีคาร์บอนตำแหน่งที่ 3 ทำให้สาย polynucleotide มีปลายด้านหนึ่งเป็น 3 อีกด้านเป็น 5
ปี พ.ศ. 2492 ชาร์กาฟฟ์ (Erwin Chargaff) ได้วิเคราะห์ปริมาณนิวคลีโอไทด์ใน DNA ของสิ่งมีชีวิตต่างๆ พบว่าปริมาณเบส A = T , C = G เสมอ เรียกกฎของชาร์กาฟฟ์
ปี พ.ศ. 2493 – 2495 วิลคินส์ (M.H.F. Wilkins) และแฟรงคลิน นักฟิสิกส์ชาวอังกฤษได้ถ่ายภาพซึ่งแสดงการหักเหของรังสีเอกซ์ที่ฉายผ่าน โมเลกุลของ DNA ซึ่งนักฟิสิกส์สามารถแปลผลได้ว่า DNA มีลักษณะเป็นเกลียว (helix) ประกอบด้วย polynucleotide มากกว่า 1 สาย และเกลียวแต่ละรอบจะมีระยะทางเท่ากัน
ที่มา 61.19.127.107/bionew/gene/5dnastructure/struch02.htm.
D. Watson นักชีววิทยาอเมริกัน & F.H.C. Crick นักฟิสิกส์อังกฤษ เสนอโครงสร้างของ DNA ได้รับ Nobel Prize ตีพิมพ์ผลงานใน Nature  ฉบับวันที่ 25 เดือนเมษายน ค.ศ. 1953
  1. ประกอบด้วย 2 polynucleotides ยึดกันโดยการจับคู่กันของเบส โดย H-bond
  2. ทั้ง 2 สายขนานกันและมีทิศทางตรงข้าม (antiparallel)
  3. การจับคู่กันของเบสระหว่าง A – T (2 H-bonds), C – G (3 H-bonds) = complementary basepairs (เบสที่เป็นเบสคู่สมกัน คือ A จับคู่กับ T ด้วยพันธะไฮโดรเจน 2 พันธะ และGจับคู่กับ C ด้วยพันธะไฮโดรเจน 3 พันธะ)
  4. ทั้ง 2 สายจะพันกันเป็นเกลียวเวียนขวา (right handed double strand helix)
  5. แต่ละคู่เบสห่างกัน 3.4 อังสตรอม (.34 nm) เอียงทำมุม 36 องศา    1 รอบ = 10 คู่เบส = 34 อังสตรอมเส้นผ่าศูนย์กลาง 20 อังสตรอม
โครงสร้างของ DNA ประกอบด้วยพอลีนิวคลิโอไทด์ 2 สาย พอลีนิวคลีโอไทด์แต่ละสายประกอบด้วยหน่วยย่อยที่เรียกว่านิวคลีโอไทด์ มาเชื่อมต่อกันเป็นสายยาว พอลีนิวคลีโอไทด์ทั้ง 2 สาย จะยึดติดกันด้วยพันธะไฮโดรเจนระหว่างเบส นิวคลีโอไทด์แต่ละหน่วยเชื่อมต่อกัน โดยพันธะที่เกิดระหว่างกลุ่มฟอสเฟตของนิวคลีโอไทด์หนึ่งกับคาร์บอนตำแหน่ง ที่ 3 ของน้ำตาลอีกนิวคลีโอไทด์หนึ่งดังนั้นโครงสร้างสายพอลินิวคลีโอไทด์เป็นการ ต่อสลับระหว่างกลุ่มฟอสเฟตกับกลุ่มน้ำตาลโดยสายหนึ่ง มีทิศทางจากปลาย5′ไปยังปลาย 3′  อีกสายหนึ่งจะจับอยู่กับปลาย5′  ของสายแรก ดังนั้นเมื่อเกิดการแยกตัวของ DNA ทั้งสองสายส่วนที่แยกออกมาจึงมีทิศทางต่างกัน
ที่มา http://www.learners.in.th/blogs/posts/415513
อ้างอิง
6. สมบัติของสารพันธุกรรม
DNA ควบคุมลักษณะทางพันธุกรรมได้อย่างไร?
จากการศึกษาโครงสร้างของ DNA ที่ผ่านมาพบว่าโครงสร้างของ DNA ประกอบด้วย
พอ ลินิวคลีโอไทด์สองสายที่มีความยาวนับเป็นพันเป็นหมื่นคู่เบส การเรียงลำดับคู่เบสมีความแตกต่างกันหลายแบบ ทำให้ DNA แต่ละโมเลกุลแตกต่างกันที่ลำดับและจำนวนของคู่เบสทั้งที่มีเบสเพียง 4 ชนิด คือ เบสA เบส T เบส C และ เบส G จึงเป็นไปได้ว่าความแตกต่างกันทางพันธุกรรมของสิ่งมีชีวิตอยู่ที่ลำดับและ จำนวนของเบสใน DNA หลักฐานที่ DNA เกี่ยวข้องกับการแสดงลักษณะทางพันธุกรรมใน พ.ศ.2500 วี เอ็ม อินแกรม (V.M.Ingram) ได้ทำการทดลองเปรียบเทียบฮีโมโกลบินของคนปกติกับคนที่เป็นโรคโลหิตจางชนิด ซิกเคิลเซลล์ ซึ่งเป็นโรคที่ถ่ายทอดโดยยีนด้อยตามกฎของเมนเดล เขาพบว่า ฮีโมโกลบินของคนที่มีเซลล์เม็ดเลือดแดงปกติจะแตกต่าง จากฮีโมโกลบินของคนที่เป็นโรคโลหิตจางชนิดซิกเคิลเซลล์ โดยการเรียงตัวของกรดอะมีโนต่างกัน 1 ตัว กล่าวคือกรดอะมีโนลำดับที่6 ของสายพอลิเพปไทด์สายบีตาของคนปกติเป็นกรดกลูตามิก(Glutamic acid) แต่คนที่เป็นโรคโลหิตจางชนิซิกเคิลเซลล์เป็นกรดอะมิโนชนิดวาลีน(Valine) โดยที่กรดอะมีโนตัวอื่นๆเหมือนกันหมด ดังนี้
  1. กรดอะมีโน 1 คนปกติจะเป็น วาลีน คนที่เป็นโรคโลหิตจางชนิดซิกเคิลเซลล์จะเป็น วาลีน
  2. กรดอะมีโน 2 คนปกติจะเป็น ฮีสทีดีน คนที่เป็นโรคโลหิตจางชนิดซิกเคิลเซลล์จะเป็น ฮีสทีดีน
  3. กรดอะมีโน 3 คนปกติจะเป็น ลิวซีน คนที่เป็นดรคโลหิตจางชนิดซิกเคิลเซลล์จะเป็น ลิวซีน
  4. กรดอะมีโน 4 คนปกติจะเป็น ทรีโอนีน คนที่เป็นโรคโลหิตจางชนิดซิกเคิลเซลล์จะเป็นทรีโอนีน
  5. กรดอะมีโน 5 คนปกติจะเป็น โพรลีน คนที่เป็นโรคโลหิตจางชนิดซิกเคิลเซลล์จะเป็น โพรลีน
  6. กรดอะมีโน 6 คนปกติจะเป็น กรดกลูตามิก คนที่เป็นโรคโลหิตจางชนิดซิกเคิลเซลล์จะเป็นวาลีน
แม้จะมีความผิดพลาดเพียงเล็กน้อยในการเรียงลำดับกรดอะมีโน ในสายพอลิเพปไทด์ก็สามารถทำให้เกิดโรคทางพันธุกรรมได้
ความผิดที่เกิดจากการเรียงลำดับกรดอะมิโน เป็นหลักฐานว่า DNA ควบคุมลักษณะทางพันธุกรรมอ้างอิง

การสังเคราะห์ DNA

วอตสันและคริกค้นพบโครงสร้างทางเคมีของ DNA ขั้นตอนต่อไปก็คือ การพิสูจน์และตรวจสอบว่าโครงสร้างของ DNA นี้ มีสมบัติเพียงพอที่จะเป็นสารพันธุกรรมได้หรือไม่ ซึ่งการที่จะเป็นสารพันธุกรรมได้นั้นย่อมต้องมีสมบัติสำคัญ คือ
ประการแรก ต้องสามารถเพิ่มจำนวนตัวเองได้โดยมีลักษณะเหมือนเดิมเพื่อให้สามารถถ่ายทอดลักษณะทางพันธุกรรมจากรุ่นพ่อแม่ไปยังรุ่นลูกได้
ประการที่สอง สามารถควบคุมให้เซลล์สังเคราะห์สารต่างๆเพื่อแสดงลักษณะทางพันธุกรรมให้ปรากฏ
ประการที่สาม ต้อง สามารถเปลี่ยนแปลงได้บ้าง ซึ่งการเปลี่ยนแปลงที่เกิดขึ้นอาจก่อให้เกิดลักษณะพันธุกรรมที่ผิดแปลกไปจาก เดิมและเป็นช่องทางให้เกิดสิ่งมีชีวิตสปีชีส์ใหม่ๆขึ้น หลังจากวอตสันและคริกได้เสนอโครงสร้างของ DNA แล้วในระยะเวลาเกือบ 10 ปี  ต่อมา จึงสามารถพิสูจน์ได้ว่า DNA มีสมบัติเป็นสารทางพันธุกรรม วอตสันและคริกจึงได้รับรางวัลโนเบลจากผลงานการค้นพบโครงสร้าง DNA ใน ปี พ.ศ. 2505 นับว่าเป็นความก้าวหน้าที่สำคัญยิ่งทางด้านวิทยาศาสตร์ และเป็นจุดเริ่มต้นให้กับนักวิทยาศาสตร์ที่จะค้นคว้าในระดับโมเลกุลต่อไป วอตสันและคริกได้เสนอโครงสร้างของ DNA ว่าเป็น พอลินิวคลีโอไทด์ 2 สายพันกันบิดเป็นเกลียว ดังโครงสร้างของ DNA ตามแบบจำลองนี้ได้นำไปสู่กลไกพื้นฐานของการสังเคราะห์ DNA หรือการจำลองตัวเองของ DNA โดยนักวิทยาศาสตร์ทั้งสองได้พยากรณ์กลไกจำลอง DNA ว่าเกิดขึ้นได้อย่างไรในปี พ.ศ. 2496 วอตสันและคริกได้พิมพ์บทความพยากรณ์การจำลองตัวของ DNA ไว้ว่า ในการจำลองตัวของ DNA พอ ลินิวครีโอไทด์ 2 สาย แยกออกจากกันเหมือนการรูดซิบโดยการสลายพันธะไฮโดรเจนระหว่างเบส A กับ T และเบส C กับ G ที่ละคู่ พอลินิวคลีโอไทด์แต่ละสายทำหน้าที่เป็นแม่พิมพ์สำหรับการสร้างสายใหม่ มีการนำนิวคลีโอไทด์อิสระที่อยู่ในเซลล์เข้ามาจับกับ พอลินิวคลีโอไทด์สายเดิม โดยเบส A จับกับ T และเบส C จับกับ G  หมู่ฟอสเฟตของนิวคลีโอไทด์ อิสระจะจับกับน้ำตาลออสซีไรโบสของ DNA โดยวิธีนี้เรียกว่า DNA เรพลิเคชั่น ( DNA replication ) ทำให้มีการเพิ่มโมเลกุลของ DNA จาก 1 โมเลกุลเป็น 2 โมเลกุล DNA แต่ ละโมเลกุลมีพลลินิวคลีโอไทด์ สายเดิม 1 สาย และสายใหม่ 1 สาย จึงเรียกการจำลองลักษณะว่า เป็นแบบกึ่งอนุรักษ์ ( semiconservatiae ) ดังภาพ

การจำลองตัวเองของ DNA  (DNA REPLICATION) 
DNA  สามารถเพิ่มจำนวนได้โดยการจำลองตัวเอง (self replication)
ซึ่งเป็นคุณสมบัติพิเศษที่สำคัญมากในการทำหน้าที่ถ่ายลักษณะทางพันธุกรรมจากสิ่งมีชีวิตรุ่นหนึ่งไปยังอีกรุ่นหนึ่ง การจำลองตัวของดีเอ็นเอเริ่มจากการคลายเกลียวออกจากกันแล้วใช้สายพอลินิวคลีโอไทด์สายใดสายหนึ่งใน 2 สายเป็นแม่พิมพ์ (template) ในการสร้างสายใหม่ขึ้นมา ซึ่งสุดท้ายดีเอ็นเอที่จำลองใหม่จะประกอบด้วยสายพอลินิวคลีโอไทด์สายเดิมและสายใหม่  นอกจากนี้ ดีเอ็นเอ  ยังทำหน้าที่เป็นแม่แบบของการสร้างสายอาร์เอ็นเอ  ดังที่ได้กล่าวมาแล้ว ซึ่งกระบวนการต่างๆ เหล่านี้จำเป็นต้องอาศัยเอนไซม์จำเพาะหลายชนิดในการควบคุมปฏิกิริยาที่เกิดขึ้น เช่น ดีเอ็นเอโพลิเมอเรส (DNA polymerase) อาร์เอ็นเอโพลิเมอเรส (RNA polymerase) เฮลิเคส (helicase) ไลเกส (ligase) เป็นต้น

เมื่อ DNA สองสายคลายเกลียวแยกออกจากกันDNA polymerasจะสังเคราะห์leading strand เป็นสายยาว โดยมีทิศทางจากปลาย 5, ไปยัง3, เรียกว่า การสร้างสาย leading strandDNA polymeras gxHodkiสังเคราะห์ DNA สายใหม่เป็นสายสั้นๆ (Okazaki fragment๗โดยมีทิศทาง 5, ไปยัง 3, จากนั้น DNA ligaseจะเชื่อมต่อ DNA สายสั้นๆให้เป็นDNA สายยาว เรียกว่า การสร้าง lagging strand

การจำลองตัวเองของ DNA ตามสมมติฐานของนักวิทยาศาสตร์มีดังนี้

1. แบบกึ่งอนุรักษ์ (semiconservative replication) เมื่อมีการจำลองตัวเองของ DNA แล้ว DNA แต่ละโมเลกุลมีพอลินิวคลีโอไทด์ สายเดิมและสายใหม่ ซึ่งเป็นแบบจำลองของวอตสันและคลิก2 แบบอนุรักษ์ (conservative replication) เมื่อมีการจำลองตัวเองของ DNA แล้ว พอลินิวคลีโอไทด์ทั้งสองสายไม่แยกจากกันยังเป็นสายเดิม จะได้ DNA โมเลกุลใหม่ที่มีสายของโมเลกุลพอลินิวคลีโอไทด์สายใหม่ทั้งสองสาย3. แบบกระจัดกระจาย (dispersive replication) เมื่อมีการจำลองตัวเองของ DNA จะได้ DNA ที่เป็นของเดิมและของใหม่ปะปนกันไม่เป็นระเบียบ

การจำลองตัวเองของ DNA

ที่มา  www.bioarunya.th.gs/web-b/ioarunya/bio042.htm

อ้างอิง

DNA กับการสังเคราะห์โปรตีน

โครงสร้างและชนิดของ RNA

RNA มีโครงสร้างคล้าย DNA ประกอบด้วยนิวคลีโอไทด์เรียงต่อกันด้วยพันธะฟอสโพไดเอสเทอร์เป็นโพลีนิวคลี โอไทด์ แต่องค์ประกอบนิวคลีโอไทด์แตกต่างกันที่น้ำตาลและเบส โดย น้ำตาลของ RNA เป็นไรโบส ส่วนเบสใน RNA มียูราซิล (u) มาแทนไทมีน(T)

ที่มา www.kik5.com/images/bio/img/p6_9_clip_image001.jpg
RNA ในเซลล์มีปริมาณมากมาย มากกว่า DNA 5-10 เท่า หน้าที่หลักเกี่ยวข้องกับ กระบวนการสังเคราะห์โปรตีน RNA ในเซลล์ส่วนใหญ่เป็นสายเดี่ยว (single standed) เนื่องจาก RNA ต้องมีโครงสร้างสามมิติที่ถูกต้องสำหรับทำหน้าที่ภายในเซลล์ดังนั้น RNA อาจจะเสียสภาพได้ด้วยความร้อน และpHสูงๆ เช่นเดียวกับ DNA แต่โครงสร้างส่วนที่เป็นเกลียวเป็นช่วงสั้นๆเท่านั้น จึงทำให้เสียสภาพได้ง่ายกว่า DNA

คำถาม

1) ข้อใดกล่าวถึงสารพันธุกรรมได้ถูกต้อง

ก. เป็นสารอินทรีย์ที่พบทั้งในนิวเคลียสและไซโทพลาสซึม ของเซลล์

ข. เป็นสารอินทรีย์ที่ประกอบด้วยธาตุคาร์บอน ไฮโดรเจน และออกซิเจนเช่นเดียวกับคาร์โบไฮเดรต

ค. เป็นสารอินทรีย์ที่มีสมบัติเป็นกรดและสามารถจ าลอง ตัวเองได้

ง. ถูกทุกข้อ

2). เซลล์ในระยะใดเหมาะต่อการศึกษารูปร่าง ลักษณะ ของ โครโมโซมมากที่สุด

ก. ระยะปกติที่ยังไม่มีการแบ่งเซลล์

ข. ระยะอินเตอร์เฟสซึ่งมีการสะสมสารต่าง ๆ ส าหรับการ แบ่งเซลล์

ค. ระยะโพรเฟสซึ่งก าลังเกิดกระบวนการ ครอสซิงโอเวอร์

ง. ระยะเมทาเฟสซึ่งโครโมโซมเรียงอยู่ตรงกลางเซลล์

3).ผลการทดลองของนักวิทยาศาสตร์ท่านใดที่ถือว่าเป็น จุดเริ่มต้นที่น าไปสู่ข้อสรุปว่า DNA เป็นสารพันธุกรรม ก. กริฟฟิท ,แอเวอรี่ และคณะ

ข. เกรเกอร์ โยฮัน เมนเดล

ค. วี เอ็ม อินแกรม

ง. โรซาลินด์ แฟรงคลิน

4).ข้อใดเป็นองค์ประกอบของนิวคลีโอโซม

1. ฮิสโตน  2. DNA     3. ไรโบโซม

ก. 1 และ 3

ข. 1 และ 2

ค. 2 และ 3

ง. 1 , 2 และ 3 ฃ

5). ข้อใด ผิด

ก. เบสคู่สม คือ A กับ T และ C กับ G

ข. nucleotide กลายเป็น polynucleotide ด้วยพันธะ ไฮโดรเจน

ค. phosphodiester bond เชื่อมระหว่างหมู่ฟอสเฟต ของ C ที่ 5ของน้ าตาลในนิวคลีโอไทด์หนึ่งกับ หมู่ไฮดรอกซิลของ C ที่ 3ของน้ าตาลอีก นิวคลีโอไทด์หนึ่ง

ง. สาย DNA จะมีปลายด้านหนึ่งเป็น 3และอีกด้าน หนึ่งเป็น 5 เสมอ

เฉลย

1).ค

2).ง

3).ก

4).ข

5).ข

Credit

https://geneticsm6.wordpress.com

ใส่ความเห็น